Vertical variation of mixing within porous sediment beds below turbulent flows
نویسندگان
چکیده
River ecosystems are influenced by contaminants in the water column, in the pore water and adsorbed to sediment particles. When exchange across the sediment-water interface (hyporheic exchange) is included in modeling, the mixing coefficient is often assumed to be constant with depth below the interface. Novel fiber-optic fluorometers have been developed and combined with a modified EROSIMESS system to quantify the vertical variation in mixing coefficient with depth below the sediment-water interface. The study considered a range of particle diameters and bed shear velocities, with the permeability Péclet number, PeK between 1000 and 77,000 and the shear Reynolds number, Re*, between 5 and 600. Different parameterization of both an interface exchange coefficient and a spatially variable in-sediment mixing coefficient are explored. The variation of in-sediment mixing is described by an exponential function applicable over the full range of parameter combinations tested. The empirical relationship enables estimates of the depth to which concentrations of pollutants will penetrate into the bed sediment, allowing the region where exchange will occur faster than molecular diffusion to be determined.
منابع مشابه
Hydrodynamics of steep streams with planar coarse-grained beds: Turbulence, flow resistance, and implications for sediment transport
The hydraulics of steep mountain streams differ from lower gradient rivers due to shallow and rough flows, energetic subsurface flow, and macro-scale form drag from immobile boulders and channel and bed forms. Heightened flow resistance and reduced sediment transport rates in steep streams are commonly attributed to macro-scale form drag; however, little work has explored steep river hydrodynam...
متن کاملWave and tidally driven flows in eelgrass beds and their effect on sediment suspension
Seagrass beds alter their hydrodynamic environment by inducing drag on the flow, thereby attenuating wave energy and near-bottom currents. This alters the turbulent structure and shear stresses within and around the seagrass bed that are responsible for the suspension and deposition of sediment. To quantify these interactions, velocity, pressure, and sediment measurements were obtained across a...
متن کاملComparison of Binomial and Power Equations in Radial Non-Darcy Flows in Coarse Porous Media
Analysis of non-laminar flows in coarse alluvial beds has a wide range of applications in various civil engineering, oil and gas, and geology problems. Darcy equation is not valid to analyze transient and turbulent flows, so non-linear equations should be applied. Non-linear equations are classified into power and binomial equations. Binomial equation is more accurate in a wide range of velocit...
متن کاملObservations of Enhanced Diapycnal Mixing near the Hawaiian Ridge
Profiles of potential density obtained from CTD casts at two stations at different distances from the Hawaiian ridge are examined for evidence of diapycnal turbulent mixing as indicated by density inversions and internalwave vertical strain. Results from independent casts are used to produce ensemble-averaged vertical distributions for the number of inversions and the Thorpe scale. Both paramet...
متن کاملLarge eddy simulation of sediment transport over rippled beds
Wave-induced boundary layer (BL) flows over sandy rippled bottoms are studied using a numerical model that applies a one-way coupling of a “far-field” inviscid flow model to a “near-field” large eddy simulation (LES) Navier– Stokes (NS) model. The incident inviscid velocity and pressure fields force the LES, in which near-field, wave-induced, turbulent bottom BL flows are simulated. A sediment ...
متن کامل